Acknowledgement: The authors thank Dr. Imre Gyuk for funding this work and Dr. Stan Atcitty for technical supervision Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. DOE SBIR HV DC Link Grant #SC0008240

15 kV Phase Leg Power Modules with SiC MIDSJT Devices

Ranbir Singh and Siddarth Sundaresan GeneSiC Semiconductor Inc.

ranbir.singh@genesicsemi.com +1 703 996 8200 43670 Trade Center Pl #155; Dulles VA 20166 September 27, 2012

Phase Leg forms fundamental building block for AC/DC AND DC/AC Conversion

Novel Single-chip Monolithic Integrated Diode Super Junction Transistor (MIDSJT)

- If achieved it will be the first time a 15 kV integrated circuit is demonstrated
- Universal applicability towards all grid-connected (15 kV/10 A) power electronics

Pre-Phase I

- 10 kV SJTs demo
- 10 kV JBS diodes demo

Phase I (7/12-4/13)

- Prove Integrated SJT/Diode chip at 1200 V
- Design 10 kV
 Integrated Devices

Phase II (8/13-8/15)

- 15 kV Integrated SJT/Diodes
- >10 A
- Optimized Packaging

Energy Storage at Medium Voltages

- Many storage opportunities exist at medium voltages
- 13.8 kV and 4.16 kV are commonly used voltages
- Silicon Carbide high voltage devices play a pivotal role at these voltages

Multilevel vs Two-Level Converters

Trade-Offs in Multilevel converters:

- Efficiency
- Robustness
- Modularity
- DesignImplementation,Complexity
- Control concerns
- Fault Tolerance

From: Franquelo et al.

Why SiC Power Devices at Medium Voltages?

Properties SiC vs Si	Performance of SiC Devices	Impact on Power Circuits	
Breakdown Field (10X)	Lower On-state Voltage drop (2-3X)	Higher Efficiency of circuits	
Smaller Epitaxial Layers (10-20X)	Faster Switching speeds (100-1000X)	Compact circuits	
Higher Thermal Conductivity (3.3-4.5 W/cmK vs 1.5 W/cmK)	Higher Chip Temperatures (250-300°C instead of 125°C)	Higher pulsed power Higher continuous current densities,	
Melting Point (2X)	High Temperature Operation (3X)	Simple Heat Sink	
Bandgap (3X) (10¹⁶X smaller n _i)	High Intrinsic Adiabatic Pulsed Current Level (3-10X?)	Higher Current Capability	

Ratings of SiC and Si Devices

- Maximum Voltage and Current Ratings of UHV SiC Bipolar
 Devices significantly higher than theoretical capability of Si
- Further SiC offers unprecedented margins from failures

15 kV SiC Switch Comparisons

		MOSFET	JFET-ON	JFET-OFF	BJT	SJT
	Gate Control	+20V/0V No Current	+0V/-20V Low Current	+3/0V Current Gain	+3V/0V Current Gain	+3V/0V Current Gain
	Current Gain	Infinite	>1000	~50 (at rated current)	~30 (at rated current)	>100 (Target at rated current)
	Current Rating	Very low	High	Low	High	High
	Fabrication Cost	Very High	Medium	High	Low	Low
	Switching Speed	Medium (Gate Cap)	High	Low/Medium (Gate- Source Cap)	Very low (Minority injection)	High (Low cap, No Minority)
	High Temperature	Very Poor	Very Good	Medium	Very Good	Very Good

High Current SJTs – output characteristics

- Low on-resistance of achieved in a 1200 V SJT
- High Current gain recorded at Drain Current of 55 A at 25 °C.
- Positive temperature co-efficient of on-resistance exhibited, which is desirable for paralleling multiple devices.

Photographs of fabricated 10 kV SJTs

On-wafer characterization – Blocking Voltage (BV) characteristics

- BV as high as 10kV recorded on 0.025 cm²
- BV as high as ~9kV recorded on 0.28 cm² SJTs

Output characteristics of 0.28 cm² on 10 kV SJTs

 Excellent Gate-Source shorting yield observed for 0.28 cm² SJTs

GeneSiC's commercial Phase Leg Packaging

Module Configuration

Status and Future Efforts

Current Status

- Fabrication steps of 1200 V MIDSJT being completed as proof of concept
- Design of Silicon Carbide Monolithically integrated diode/Super Junction Transistor (MIDSJT) being conducted
- Future Efforts in Phase I
 - Characterize devices from present batch and study MIDSJT concept
 - Complete layout, fabrication and characterization plan for 15 kV/10 A devices

Grant Details

- Principal Investigator: Dr. Siddarth Sundaresan
- Program Manager: Dr. Ranbir Singh
- Grantee:

GeneSiC Semiconductor Inc.

43670 Trade Center Place

Suite 155

Dulles VA 20166

+1 703 996 8200 (ph)

ranbir.singh@genesicsemi.com